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In this project, we want to (1) verify the robustness of neural networks as sound as possible via Gurobi linear solver while 

(2) complete a single verification task within 7-minute timeout. Therefore, we first analyzed the running time exploiting 

linear solver for all layers during the verification and figured out that except mnist_relu_4_1024, all other provided 

networks can be verified within 7 minutes (with test image: img66, epsilon=0.01, running on 2.5GHz i5-7200 CPU). In the 

next step, we then layer by layer replaced the linear solver by interval analysis as provided in the skeleton. Fig. 1 shows the 

results of running time and output bounds in the considered verification settings. We can see that any replacement of the 

interval analysis cause failed verification due to the lack of precision and significant changes in output bounds. In addition, 

we also figured out that linear solver should never be used in the low-level layers (layers that close to the input layer) since 

it not only loses precision but also increases overall running time. We will follow this rule of thumb when the neural network 

becomes larger and can no longer be verified within the time limit. 

 

Fig. 1 (a) Running time and (b) output bounds of the considered verification settings. The indices in x-axis after “linear” 

indicate in which network layer we apply the linear solver. “Linear” represents applying linear solver to all network 

layers (can be served as the ground truth), while “Box” represents only interval analysis (the most imprecise result). 

In addition, we further analyzed the correlation between running time and epsilon. In general, the larger the epsilon is, the 

more constraints and variables are added to the solver and thus more computation time is required. However, the running 

time also depends on the input images and not always satisfies this correlation. We thus take both the number of hidden 

units (variables to be solved) in the network and the input epsilon into account when deciding our verification setting. 

As for optimizing the computation of the linear solver, we have designed the following improvement. First, we jointly 

update the intervals and variables constraints based on the results of linear solver. This strategy helps us reduce the searching 

space when applying the solver. Secondly, for the networks that is too large to add constraints and variables, we designed a 

dynamic programming based linear solver approach to reduce the computation. In particular, we store ReLU output as a 

linear combination of the input variables in a data structure, and only use the solver when solving the objective functions. 

However, this can also cause precision loss since the output bounds are not as tight as the bound obtained by using only 

linear solver. 

In summary, we decide the verification setting based on the following rules of thumb: 1) for the network consists less hidden 

units, we apply linear solver to all layers; 2) for the network consists more hidden units (about 1500 units with a large 

epsilon based on our experiment), we implement dynamic programming based linear solver method; 3) when the 

computation bottleneck of dynamic programming reaches the time limit, we start to apply interval analysis in the high-level 

layers (layers that close to outputs). In particular, we only replace at most one layer by interval analysis due to the precision 

loss. Finally, since the machine used for grading is different from our test environment, we might need to slightly adjust the 

above parameters according to the evaluation results from TA. 
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