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Abstract—Road segmentation is a popular computer com-
puter vision task. In this project, we modified a state-of-the-art
convolutional neural network and developed a geometric-aware
post-processing pipeline. As neural networks are data-hungry,
we augment the lack of training data from the CIL dataset
with external datasets. To further boost performance, we used
an ensemble of models. With these techniques, we were able
to rank 2nd in the both the public and private leaderboards
of the 2019 CIL road segmentation Kaggle contest.

I. INTRODUCTION

The road segmentation problem is determining whether
each pixel of a given image is part of a road, or not.
Road extraction from aerial images is a popular problem in
computer vision with many applications such as automated
updating of road maps [1] and detecting road damage [2].

A. Related work

Recently, convolutional neural networks (CNNs) [3], [4]
have shown impressive performance in tackling the problem
of semantic/instance segmentation [4], [5], [6], [7]. Although
the raw output of a CNN performs well in pixel-wise
evaluations, it usually lacks visual structure. As such, various
techniques have been proposed to post-process the output
of CNNs for road extraction. These include probabilistic
models [8], structured SVM [9] and heuristics such as
sampling the junctions [10], bridging gaps in roads via A⇤

search [11], or finding shortest paths [12].

B. Issues with state of the art

While CNNs have demonstrated the ability to extract
semantic information in a data-driven manner, large amounts
of training data are required [13], [14], [15]. Data aug-
mentation and transfer learning are two main methods
to combat the lack of training data. Data augmentation
involves generating more training data or using external
datasets. For instance, Kaiser et al. [16] showed how one
can generate coarse supervisions from Google Maps and
Open Street Maps. Meanwhile, transfer learning reduces
the computational burden of training a neural network by
starting with a pre-trained network. In this project, we used
external datasets (DeepGlobe [17] and SpaceNet [18]) and

⇤Names are in alphabetical order of first names.

adopted the architecture of Xception [19] as our backbone
segmentation encoder.

Compared to semantic segmentation tasks on common
objects [13], [15], the problem of road segmentation is a spe-
cific instance of semantic segmentation with only two classes
and it has strong geometrical priors. This motivates the use
of heuristics and post-processing techniques on the CNN
output. We developed our own post-processing pipeline of
performing heuristic line smoothing (Section II-B1) before
applying a graph cut algorithm (Section II-B2).

C. Contributions

We propose a road segmentation method consisting of a
semantic-aware soft label predicting model and a geometric-
aware post-processing pipeline. External datasets were used
in the training process to augment the training images
provided and we evaluated our approach using the data from
the 2019 CIL road segmentation contest1.

II. MODELS AND METHODS

Given a dataset D consisting of RGB satellite images and
road segmentation masks pairs

�
x(i), y(i)

�
2 D, we aim

to design an algorithm that extracts road mask z for an
unseen input RGB image x. In this section, we describe our
neural network architecture for road segmentation and how
we post-process its output using heuristic line smoothing
and graph cut. Fig. 1 shows a training pair while Fig. 2
illustrates our entire pipeline: Given an input image x, our
network returns a softmax output ey. After post-processing it
via our heuristic line smoothing to obtain eys, we run a graph
cut algorithm to compute a binary label assignment z. Note
that our post-processing steps (line smoothing and graph cut)
are applied after the model prediction without any supervised
data, thus they do not incur any training computation cost.

A. Neural network architecture

As suggested in [20], we use a network structure that
exploits dilated/atrous convolution and pyramid pooling2 in
cascaded Xception [19] to perform semantic segmentation.
However, Yu et al. [21] pointed out that simply applying
skip connections to different level layers in the network may

1https://inclass.kaggle.com/c/cil-road-segmentation-2019
2This is also known as Atrous Spatial Pyramid Pooling (ASPP).

https://inclass.kaggle.com/c/cil-road-segmentation-2019


(a) RGB input x (b) Segmentation mask y

Figure 1: RGB input and its road segmentation mask

not effectively fuse the semantic information in the feature
maps. Taking inspiration from their work, we extend our
network using interactive deep aggregation. To be precise,
the fused feature maps are first generated by applying
convolution to the aggregation of low-level feature maps f1
and f2, then the resulting fused feature maps are once again
concatenated with the semantic feature maps fs to obtain
the final predictions ey. See Fig. 2 for an illustration.

In the Kaggle contest, we only care about performance
and not inference time. Hence, we consider using an en-
semble of neural networks. To encourage diversity within
the ensemble, we employed different loss functions to fo-
cus on different aspects of the problem. We first describe
the loss functions (LCE , LWCE , LJ , LF , LTV ) used before
explaining how we combined them in the ensemble.

1) Loss functions: Since road segmentation task is a
pixel-level binary classification task, a typical loss function
to use would be the binary cross-entropy loss function
LCE(eY , Y ) where Y = {y(1), . . . , y(N)} are the binary
ground-truth masks with corresponding predicted probabilis-
tic masks eY . To handle the imbalance of classes in the road
segmentation dataset, we also considered the weighted cross-
entropy loss LWCE(eY , Y,↵) where we weight the loss term
from class “roads” by an ↵ factor.

Another way to combat class imbalance is to consider
the Jaccard index as suggested by [22]. Given softmax
prediction masks eY and ground-truth masks Y , the Jaccard
index is defined as J(eY , Y ) = |eY \Y |

|eY [Y |
= |eY \Y |

|eY |+|Y |�|eY \Y |
.

Suppose there are n pixels across all images, then we can
formulate a pixel-wise Jaccard index as follows:

J(eY , Y ) =
1

n
·

⇣Pn
i=1 eyiyi

⌘
+ ✏

⇣Pn
i=1 eyi + yi � eyiyi

⌘
+ ✏

where eyi is the predicted probability for the ith pixel, yi is
the binary ground truth for the ith pixel, and ✏ is a small
smoothing term in case the denominator is zero. We then
define the Jaccard loss as

LJ(eY , Y ) = 1� J(eY , Y )

We also considered two other loss functions — focal loss
[23] and total variation loss [24]. Focal loss LF can be
viewed as a re-parameterization of the cross-entropy loss
by weighting higher training loss for pixels with higher
uncertainty. On the other hand, total variation loss LTV

penalizes large changes between adjacent pixel predictions.
Let eyi,j be the prediction probability for the pixel with
coordinate (i, j), and � be a hyperparameter. Then,

LF (eY , Y ) =
X

ey2eY

X

i,j

�(1� eyi,j)� log(eyi,j)

and

LTV (eY , Y ) =
X

ey2eY

X

i,j

|eyi+1,j � eyi,j |+ |eyi,j+1 � eyi,j |

2) Ensemble: We use the following three combinations
of loss functions and output their mean prediction as ey.
Model 1 :Ltrain = 0.2 · LJ + LF

Model 2 :Ltrain = 0.2 · LJ + LCE

Model 3 :Ltrain = 0.2 · LJ + LWCE + 10�7 · LTV

Observe that the total variation is very sensitive to relative
weighting of the other loss functions. In actuality, we used
more than three models because we varied other hyperpa-
rameters such as training rate.

B. Post-processing

The segmentation output from a neural network is
typically fragmented and lacks structure. We apply two
post-processing techniques to the softmax prediction ey to
smoothen the prediction mask and connect disjoint roads.

1) Heuristic line smoothing: The first step is to fill in
gaps created by objects on the roads such as cars or trees. To
do so, we use the probabilistic output mask eY as a guideline
to increase the probability of each pixel being a road by
performing line smoothing under rotations.

We first describe vertical line smoothing, then explain how
this generalizes to line smoothing under arbitrary rotations.
Let r, R, and ⌧ be parameters such that 0 < r < R. For
each pixel (i, j) with soft prediction by the neural network
pi,j , we consider a strip of 2R + 1 pixels with (i, j) in the
middle. We define 4 sets of pixel probabilities with respect
to pixel (i, j):

Sdown = {pi,j , pi,j�1, . . . , pi,j�R},
Sup = {pi,j , pi,j+1, . . . , pi,j+R},

Tdown = {pi,j , pi,j�1, . . . , pi,j�r},
Tup = {pi,j , pi,j+1, . . . , pi,j+r}.

The sets Sdown and Sup are our “smoothing windows” while
Tdown and Tup are “threshold lookaheads”. To fill small
gaps in vertical roads, we set the probability of pixel (i, j)
being a road to the largest probability in Sdown and Sup.
However, this process alone may widen roads unnecessarily.
As a remedy, we consider the sets Tdown and Tup, and only
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Figure 2: Road segmentation pipeline on test_25.png

apply smoothing if its maximum value exceeds ⌧ . To be
precise, we define s⇤down, s⇤up, and s⇤ as follows:

s⇤down =

(
maxp2Sdown p if maxp2Tdown p � ⌧

0 otherwise

s⇤up =

(
maxp2Sup p if maxp2Tup p � ⌧

0 otherwise

s⇤ = max
n
pi,j ,min{s⇤down, s

⇤
up}

o

We generalize the above smoothing method under ro-
tations by computing s⇤✓ after rotating the mask ey by
✓ 2 {0�, 45�, 90�, 135�}. Then, we set the probability eysi,j
for pixel (i, j) to the maximum of s⇤0, s⇤45, s⇤90, and s⇤135.
Fig. 3 illustrates how s⇤45 is computed.

Figure 3: Example of s⇤45 being computed on a small patch

2) Graph cut: Inspired by [25] and [26], we adopt a graph
cut algorithm as our second stage prediction refinement.
Consider the following weighted graph G = (V,E):

• Set V contains all n pixels and two sentinel nodes R
and R, indicating “road” and “not road” respectively.

• Each pixel is connected to R with an edge weight of
eys, and to R with an edge weight of 1� eys.

• Adjacent pixels are connected with an edge weight
proportional to their similarity in the LAB color space.

We derive the binary mask prediction z by finding a
minimum cut separating R and R, then assigning pixels
according to their partition. One can define graph cut as
minimizing the following energy function:

E(Z) =
nX

i=1

 i(zi) + �
nX

i=1

X

j2N(i)

�i,j(zi, zj)

where � is the hyperparameter, zi 2 {0, 1} is the binary
label of the ith pixel,  i(0) = 1� eysi ,  i(1) = eysi , and

�i,j(zi, zj) =

(
exp

⇣
� (Ii�Ij)

2

2�2

⌘
if zi 6= zj ,

0 otherwise.

Ii and Ij are 3-dimensional LAB color values for the ith and
jth pixels. The function �i,j penalizes heavily for similar
pixel colors when |Ii � Ij | < �, while being close to zero
when adjacent pixels have very different colors.

III. EXPERIMENT

A. Dataset and Evaluation Metrics

We trained our network on the dataset provided by the
2019 CIL road segmentation contest. The training set con-
sists of 100 RGB aerial images of size 400⇥400 as well as
their corresponding binary road masks. Our classification is
evaluated on Kaggle leaderboard via the accuracy of the 94
608 ⇥ 608 test images. Due to the lack of validation data,
we further perform a 90� 10 training-validation split of the
given training dataset. In our experiments, we also include
the pixel-wise mean Intersection over Union (mIoU) score



of the validation set. mIoU captures the Jaccard index and
is a common metric used in object detection tasks.

To prevent over-fitting on the small number of training
data, we collected other two road segmentation datasets —
DeepGlobe [17] and SpaceNet [18] — to pretrain our model.
DeepGlobe contains 6226 RGB satellite images of size
1024⇥1024 alongside their road segmentation masks, while
SpaceNet consists of 1774 16-bit satellite imagery of size
1300⇥1300 and their road information in GeoJSON format.
To use SpaceNet, we converted the 16-bit imagery into RGB
format and encoded the GeoJSON data into corresponding
image masks before training. Both datasets serve as good
sources of data augmentation to pretrain our network.

B. Implementation Details

As our backbone segmentation encoder, we adopted the
architecture of Xception [19] with its weights being pre-
trained on the ILSVRC-2012-CLS [27] image classification
dataset before fine-tuning with the CIL dataset. During the
training process, we apply batch normalization to convo-
lution layers and perform simple image manipulation of
the training images such as random flips, random rotations
and random crops. We train our network using the Adam
optimizer with a batch size of 4, first-momentum of 0.9,
and second-momentum of 0.99. The learning rate for pre-
training the model on DeepGlobeand and SpaceNet is set
to 5⇥ 10�6, and to 5⇥ 10�7 when we fine-tune using the
CIL dataset. In the network, we use the hyperparameters
↵ = 1.2, ✏ = 10�9 and � = 0.5. For post-processing, we
set r = 3, R = 16, ⌧ = 0.25, � = 10, and � = 5.

C. Comparison

In Table I, we compare our work with four base-
lines (KNN, SVM, color-based GraphCut, ShallowCNN)
and three state-of-the-art segmentation models (FCN [4],
DeepLabV3 [20], DeepLabV3+ [28]. We first describe how
each baseline is compute.
KNN We compute the ratio of roads versus non-roads for

each RGB pixel value. That is, we obtain a mapping
f : [256]3 ! [0, 1]. Then, for each pixel x in a test
image, let xi be the ith closest point to x in the RGB
space. The soft prediction output for pixel x is then

1Pk
i=1 d(x,xi)

Pk
i=1 d(x, xi) · f(xi), for k = 5.

SVM We sampled 5626 RGB pixel values and labels from
the training set, and trained a SVM model with Gaus-
sian kernel of bandwidth 0.1. A 16⇥16 patch is labelled
as a road if at least 30% of the pixels are labelled as
a road by the SVM. The 30% threshold and the SVM
bandwidth were optimized via a 90-10 split.

GraphCut We derive a binary prediction mask by mini-
mizing the energy function similar to the graph cut
algorithm in Section II-B1 where  is computed by
estimating the likelihood of a pixel in the “road” and
“non-road” color distribution instead.

Methods Public Private mIoU

Baseline

KNN 0.83563 0.81630 0.48670
SVM 0.84752 0.83051 0.21423
GraphCut 0.57459 0.55377 0.40879
ShallowCNN 0.44929 0.47613 —

SOTA
FCN 0.87376 0.86878 0.75439
DeepLabV3 0.87281 0.86406 0.75810
DeepLabV3+ 0.87143 0.86376 0.77778

Ours

W/o pre-training 0.87640 0.86821 0.78766
W/o post-processing 0.91477 0.91103 0.84934
Single full model 0.91936 0.91595 0.85677
Model ensemble 0.92472 0.91451 0.87010

Table I: Performance evaluation and comparison

ShallowCNN In CIL tutorial 11, we were given a 2-layer
CNN to classify 16⇥ 16 image patches. As it operates
on patches, we can only compute patchwise accuracy
on Kaggle but not pixelwise mIoU.

D. Discussion

Table I summarizes the quantitative results of our pro-
posed method against baselines and state-of-the-art methods.
Our method produced favorable results due to integration
of learning segmentation information from external datasets
and combination of different training losses.

Approaches simply using color information such as KNN,
SVM, color-based graph cut were unable to achieve compa-
rable results due to a lack of ability in modeling complicated
aerial images. While different state-of-the-art network ar-
chitectures have similar performance, we observe that using
a pre-trained backbone encoder significantly improves the
performance of a neural network, justifying transfer learning.

We performed an ablation study to verify each design
choice of our proposed method. The use of external training
data provided a significant performance gain, even if the
distribution of images is not necessarily the same. While our
post-processing pipeline only gave a modest improvement,
a further use of an ensemble of networks eventually earned
us a second place position in the Kaggle leaderboard.

IV. SUMMARY

We used data augmentation to train an ensemble of
neural networks for road segmentation and designed a post-
processing pipeline to enforce structure into the output of
the ensemble. This resulted in a high accuracy classifier with
an accuracy of 0.92472 on the private test set, and mIoU of
0.87010 on the CIL road segmentation dataset.
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