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ABSTRACT
Human gesture recognition is among interesting topics of visual
understanding, which benefits a variety of applications like user
interface design and robotic perception. With the goal of deriving
an effective model to recognize human gestures, we propose a
deep neural network architecture for describing and recognizing
important spatial-temporal information across different video data
domains. Our proposed network is realized by using a technique of
transfer learning, inwhich the network can be trained and evaluated
on a relative small dataset while possible overfitting can be also
mitigated. In our experiments, ourmethod is able to achieve state-of-
the-art accuracy on a challenging gesture recognition benchmark.

1 INTRODUCTION
Human gesture carries a wealth of information, aiding us in com-
munication, negotiation and even expressing our feelings without
words. Understanding and recognizing the meaning of human ges-
ture is therefore important for applications in the area of human-
computer interaction, computer vision and robotics. To recognize
semantics of human gesture given a video sequence, gesture recog-
nition can also be regarded as a task of video action recognition.

Traditional approaches for video action recognition utilized
hand-crafted features, such as HoG [2] and HoF [11], with ag-
gregation of interest points based on trajectories [20, 21]. With
the development of deep learning, recent works successfully uti-
lized deep convolutional neural networks (CNNs) for video action
recognition [10, 14]. However, this improvement is brought on by
more robust CNN image representations. Approaches to model-
ing the temporal structure are still naive and simple, e.g., subsam-
pling several frames and performing average pooling to generate
final predictions. Other deep learning based methods have been
explored by utilizing recurrent neural networks (RNNs) [3, 15, 25],
and other feature aggregation schemes [6, 22, 23] based on CNN
features. Nevertheless, these methods introduce new computation
overhead but not necessarily perform better than simple average
pooling [22]. More recent works introduced the concept of 3D con-
volution [5, 9, 16, 17] and (2+1)D convolution [18], which enhanced
the capability of CNNs to model the short-term temporal structure.
However, the explosion of parameters not only increases overall
computation time, possible overfitting might also occurs as well. In
addition, evidence also shows that exploitation of additional depth
maps, pre-computed optical flow can always improve the perfor-
mance [1, 5, 22], which suggests that simply using features from
RGB frames is insufficient to capture spatial-temporal information
within video clips.

Inspired by [7, 12], with the goal of incorporating both short-
term and long-term information from different domains of data, we
introduce a spatiotemporal multimodal network. In specific, our
model combines multiple 3D CNN feature extractors for capturing
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Figure 1: Example of a video clip from ChaLearn [4] dataset
and our preprocessing procedure.

short-term information from RGB frames, depth maps, and skeleton
data. Moreover, we further integrate a sequence-to-sequence model
based on bidirectional long short term memory (biLSTM) and at-
tention mechanism, which allows the exploitation of long-term
temporal information for improved classification.

In summary, our contributions are listed as follows:
• We exploit 3D CNN feature extractors pretrained on a large
scale dataset, and further encode the resulting feature maps
for later classification. Not only the number of parameters
during training can be reduced, possible overfitting due to
limited training data can be also alleviated.
• Our network is able to observe long-term dependency be-
tween segments within a full video sequence by integrating
informative spatial-temporal features with RNN-based com-
ponents.
• In addition to the use of RGB video frames, we further extend
our network by exploiting auxiliary features of depth maps
and skeleton information, which is able to compensate for
the shortfall of RGB features.

2 PROPOSED METHOD
2.1 Dataset and preprocessing
The provided dataset for gesture recognition is a cleaned version
of the ChaLearn [4] dataset, which contains 5722/1765/2174 video
clips in the training, validation and test set respectively. For each
video which contains L (50 ≤ L ≤ 150) frames, we are provided
with its RGB frames, depth maps, segmentation masks, skeleton
information (denoted as {x(i)rдb , x

(i)
d , x

(i)
m , x

(i)
s }i=0, ...,L−1) and the

corresponding action label y. The RGB frames, depth maps and
segmentation masks are cropped into size of 80×80 pixels while
skeleton information is a 180-dimensional feature per frame.

As shown in Fig. 1, we apply several prepossessing techniques
based on characteristics of different data domains rather than simply
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Figure 2: Our spatiaotemporal multimodel network for gesture recognition. We have three sub-models in green, blue, and
oranges denote the RGB frames, depth maps and skeleton information, respectively. The input sequence is divided into a
series of 16-frames clips to extract their spatial-temporal representations. The final prediction is made by considering all
representations in order via a BiLSTM cell.

using the raw data as inputs. To be precise, we perform element-
wise multiplication on xd and xm to eliminate noisy depth response
near the edge of human body. Moreover, we depict skeleton features
as 80×80 RGB skeleton frames x̃s which are more suitable for the
3D CNN feature extractor. Finally we also adjust the channel order
of xrдb (i.e., from BGR to RGB) in correspondence to the pretrained
weigths of our feature extractor.

2.2 Network architecture
The architecture of our proposed method is shown in Fig. 2, which
consists of network components for video feature extraction and
gesture recognition. Details of our network will be described in the
following subsections.

2.2.1 Feature extraction. As suggested in [18], the architecture
of 3D CNN have demonstrated the ability to extract semantic
spatio-temporal feature given a short video segment (usually with
a fixed length of 16 frames). Thus, we first split each video clip into
segments with fixed-length for feature extraction, e.g., {S(j)rдb =

{x(16j)rдb , . . . , x
(16j+15)
rдb }}j=0, ...,N−1, N =

⌈ L
16
⌉
. However, training

such network on a small dataset is infeasible due to large num-
ber of parameters in 3D convolution kernels. We address this issue
using the technique of transfer learning, which reduces the compu-
tational burden of training a network by initializing with pretrained
weights.

To be more specific, we adopt the architecture of Convolutional
3D networks (i.e., C3D networks [17]) as our feature extractor, in
which its weights are pretrained on Sport1M [10] video classifi-
cation dataset. The feature map yielded from the pool5 layer of
extractor serves as the input of a feature encoder, which further

encodes the feature map into a compact representation for later
classification.

In addition, to further enhance robustness of spatio-temporal
feature and classification performance, we employ three separated
feature extractors to capture domain specific information in dif-
ferent data domains. We note that the concatenation of the above
features can be regarded as a new feature representation, i.e., {e(j) =
concat(e(j)rдb , e

(j)
d , e

(j)
s )}j=0, ...,N−1.

2.2.2 Sequence based gesture recognition. From the above sub-
section, we see that the first stage of our network performs feature
extraction across data domains to preserve domain specific infor-
mation in the compact feature representation. Since the focus of
our network is to perform gesture recognition, we finally introduce
a sequence based classification network.

As pointed out by [7, 12], integration with RNN-based com-
ponents allows one to observe long-term dependency between
segments within a video sequence. Inspired by their work, we par-
ticularly exploit bidirectional long short term memory (biLSTM) to
model long-term dependency in each video clip. The biLSTM cell
takes a sequence of concatenated features {e(j)}j=0, ...,N−1 as inputs
and returns both forward hidden states Hf or = {

−→
h (j)}j=0, ...,N−1

and backward hidden states Hback = {
←−
h (j)}j=0, ...,N−1, which

preserve semantic information across time periods. A following
single-hidden-layer MLP can generate softmax predictions Ỹ =
{ỹ(j)}j=0, ...,N−1 given Hf or and Hback as inputs. The average
cross-entropy loss between the softmax predictions and ground-
truth label is calculated as:

L = −
1
N

N−1∑
j=0

y · log(ỹ(j)), (1)



Spatiotemporal Multimodal Network for
Dynamic Gesture Recognition

where the ground-truth label y is converted to a 20 classes one-hot
vector, and the loss is averaged over a sequence of 20-dimensional
softmax predictions Ỹ .

Due to the special characteristic of human gestures, e.g., two ges-
tures could have totally different meanings with only slight differ-
ences, it would be desirable to apply a mechanism to distinguish and
emphasize such differences. Thus, we further extend our sequence
based network by integrating the attention mechanism [13, 19],
which assigns importance weights to different segments instead of
treating them equally for classification. We note that the attention
wrapper can be easily applied and integrated to our network with
only small computational overhead.

2.3 Implementation details
2.3.1 Network topology. The architecture of 3D CNN feature

extractor is based on the architecture in [17], which consists of
8 convolution layers (with 64, 128, 256(×2), and 512(×4) 3×3×3
convolution kernels) and 5 spatial-temporal pooling layers. Based
on their architecture, we additionally apply batch normalization [8]
to each convolution layer to accelerate the training procedure. The
flatten feature (4608-d) extracted from the pool5 layer serves as the
input of our feature encoder, which has a two-layer fully connected
structure (with 4608, and 256/128 Leakly ReLU [24] units). Each fully
connected layer is followed by a dropout layer to prevent overfitting.
Our sequence based classification network consists of a biLSTM
with 256 hidden units in the both forward and backward cells. Both
cells contain an additional dropout wrapper and attention wrapper
for improved classification.

2.3.2 Parameter settings. To train our proposed model, we em-
ploy different learning rates when updating different network com-
ponents. To be detailed, we train our network using Adam optimizer
with a batch size of 4, first- and second-momentum of 0.9 and 0.99,
and dropout rate of 0.3. The length of attention wrapper is set to 5
so that it fits the number of segments in video clip. The learning rate
of the feature extractors is set to 10−5 while the other components is
set to 5× 10−5 in the training procedure. We choose “fixed learning
rate” and “average loss" (i.e., Eq. 1) for updating parameters. It takes
roughly 12 hours to train our network in total 40K iterations on a
single NVIDIA Tesla V100.

3 EXPERIMENT
Table 1 summarizes the quantitative results of our method. We
compare our spatiotemporal multimodal network with existing
baseline models, and report their public scores after submission.
Our method produced favorable results due to learning of long-term
video dependency in multiple data domains. Approaches of 2D CNN
andC3D [17]were not able to achieve comparable results due to lack
of ability in modeling dependency between video frames/segments.
We also observed that the use of “average loss", which outperformed
the other two loss computation criteria could also benefit learning
of long-term dependency in the LSTM cells.

To further verify each design choice of the proposed network,
we also present controlled experiments using variants of our model.
First, we search for an appropriate feature size for the spatial-
temporal features and LSTM hidden states (i.e., e,

←−
h and

−→
h ). It

Methods Accuracy

Baseline
2D CNN (Sample) 0.4765
C3D [17] 0.7332
Hard baseline 0.8326

Analysis of
feature size / LSTM units

256 / 128 0.8565
512 / 256 0.8804
1024 / 512 0.8896

Analysis of loss critera
“last logit" 0.8261
“average logit" 0.8666
“average loss" 0.8804

Analysis of network design

RGB only 0.7690
RGB + depth 0.7856
W/o skeleton preprocessing 0.8031
W/o pre-training 0.8233
W/o attention wrapper 0.8565
W/o dropout wrapper 0.8684

Ours Full model 0.8804
Ensemble 0.9126

Table 1: Performance evaluation and analysis of our net-
work design and settings.

shows that using the size of 1024/512 slightly improved the per-
formance, while the number of parameters was increased by 16M.
Therefore, to reduce computational overhead and training time, we
choose 512/256 as our final parameter setting. In addition, we note
that the exploitation of our data preprocessing outperformed other
variants which either solely use data in certain domains or without
any preprocessing. This again verifies the effectiveness of learning
domain-specific features in a multimodal scheme. It can also be
seen that training the network from draft prone to overfit the small
amount of training data, and therefore could not yield satisfactory
performance. Finally, our ensemble model is averaged over softmax
predictions from multiple full models (i.e., models in different runs).
It is clear that both our full model and ensemble model achieved
the best performance among all variants. Thus, our network design
and integration of the above components are desirable for gesture
recognition.

4 CONCLUSION
We present spatiotemporal multimodal network which effectively
incorporates features extracted from different data domains. We
also introduce sequence based gesture recognition component to
model long-term dependency between video segments and fur-
ther improve the performance of our proposed network. In the
experiment, we verify the effectiveness of our network design and
demonstrate that our model perform satisfactory result against
the other participants on the leaderboard of the dynamic gesture
recognition challenge.
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