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Abstract—Most existing pose-guided image generation ap-
proaches rely on pre-computed pose inputs and paired ground
truth to transfer appearance details from the source image to
the conditional pose. We alternatively model this problem in
an image translation setting which does not require auxiliary
pose inputs to translate human appearances. With the goal
of learning representative pose and appearance details, we
propose an end-to-end Multi-Objective Multi-Identity Network.
Our model explicitly encodes semantic pose information while
capturing the corresponding appearance details in a multi-
task learning scheme. Moreover, our newly designed skeleton
patch verification loss mitigates the constraint of using paired
ground truth for training. Both qualitative and quantitative
results from our experiments confirm the effectiveness of our
proposed method.

I. INTRODUCTION

In recent years, research attention has been attracted to
learn robust human representations for a variety of computer
vision tasks like pedestrian re-identification [1] or person
image generation [2]. In this project, we focus on the
task of conditional person image generation, which aims at
transferring the appearance details (e.g. clothes, hairstyles,
accessories...) from a source image to a target pose as
depicted in Fig. 1a.

While recent works have shown impressive performance
in light of generative adversarial networks (GANs) [3]
based image generation models, these methods highly rely
on paired (images with the same identity) ground truth
and auxiliary pose maps from off-the-shelf pose estimation
models (Fig. 1b). Such a training scheme results in the
inflexibility of utilizing pairwise data only, the instability
for relying on the quality of generated pose maps, and also
extra computations for generating the pose maps even in the
inference stage.

On the other hand, other approaches also attempt to model
this problem in a more practical yet challenging image-to-
image translation setting [4], which learns an implicit image
translation function (e.g., the changing of colors or styles)
given only RGB source images and target images. However,
they cannot transfer human appearances well as shown in
Fig. 1c, since the learned human representation is easily
affected by irrelevant background or contents. Thus, it would

Figure 1: (a) Human image generation task conditioned on
a target pose. (b) Example of pose-guided training methods
which rely on paired training images and auxiliary pose
inputs. (c) Unsupervised image translation methods which
do not necessarily transfer human appearance details to the
target pose.

be a challenging task to adapt human appearance details in
the source image while keeping its pose fixed as the target
image without any guidance from the auxiliary pose map.

To overcome the aforementioned challenges we propose
Multi-Objective Multi-Identity Network (MOMI-Net), which
not only relaxes the requirement of using auxiliary pose
maps in a multi-task learning scenario, but it is also capable
of transferring human appearance details to any unpaired
identities. Our network consists of a pose distillation branch
plus an image translation branch, which can be optimized
jointly by sharing information with each other. This also
provides a better generalization to the conditional image
translation task. We uniquely adopt the technique of knowl-
edge distillation [5] to ensure the pose distillation branch
would encode semantically meaningful human pose features.
Further, the image translation branch learns pose-aware
appearance details by manipulating the obtained features for
image reconstruction. It is also worth noting that with the
aid of our newly proposed skeleton patch verification (SPV)
loss, our model can be trained more efficiently by sampling



any unpaired training images.
In the following subsections, we provide an overview and

issues of existing works, followed by a summary of our
contributions before entering the details of our proposed
method.

A. Related works

Pose-guided image generation: A vast number of ap-
proaches have been proposed to tackle with pose variances,
irrelevant background, and occlusions using auxiliary pose
landmarks [2], [6], [7], [8], [9], [10] or semantic parsing [11]
as guidance during training. While pose-guided methods
demonstrate the ability to extract appearance details effec-
tively, they also introduce computational overhead for the
pre-computed pose inputs or cumbersome components in
their models. Meanwhile, their results also highly depend
on the quality of pose inputs obtained from the off-the-
shelf human pose detector, which once again limits their
flexibility. In contrast, our network shows the ability to
extract meaningful pose information only from the input
RGB image without extra guidance.

Unsupervised image translation: Recent studies also
utilize the idea of style transfer to synthesize images across
viewpoints/poses. For instance, Zheng et al. [12] utilize MU-
NIT [13] to decompose images into structure and appearance
codes and generate images by recombining them. Xiao et
al. [14] disentangle pose-related features by reconstruct-
ing pseudo ground truth sampled from a well-constrained
dataset. However, rather than explicitly translate images with
respect to their poses, these methods only transfer them into
another implicit style. Thus, the generated results cannot
fully exhibit appearance details from the source images.
While Wu et al. [15] recently manage to interpret the dis-
entangled structural (pose) feature via geometry distillation
with VAE [16], their assumption is still insufficient to model
complicated human images with large pose variances. In
comparison, our method explicitly preserves semantic in-
formation in the pose feature via knowledge distillation and
is capable of adapting appearance details more accurately.

B. Contributions

• We resolve the issue of existing pose-guided learning
methods, which require auxiliary pose inputs for both
training and inference. Also compared with image
translation methods, MOMI-Net can explicitly learn
semantic pose features and more representative appear-
ance details.

• Our newly proposed SPV loss mitigates the limitation
of utilizing paired ground truth for training. Under our
training scheme, our network can produce more realis-
tic and diverse images by transferring the appearance
information between arbitrary identities.

• The re-implementation of several state-of-the-art meth-
ods alongside experimental results have quantitatively

and qualitatively confirmed the effectiveness of our
method on the challenging dataset.

II. METHODS

In this section, we introduce our MOMI-Net which per-
forms conditional image translation from a source image
to any target pose. The entire pipeline is shown in Fig. 2:
Given an input image, our pose distillation branch first
extracts semantic pose information from the image and
encodes it into a pose feature zp. Similarly, our image
translation branch takes the image alongside its semantic
pose information to return a pose-aware appearance feature
za. Finally, the task of image translation is accomplished by
recovering the images after swapping and recombination of
zp and za with other training samples.

In particular, a training tuple x, x+, x− ∈ RH×W×3

is sampled from the dataset at each training step. x+

denotes a positive sample that shares the same identity
(similar appearance) with x while x− is a negative sample
with distinct appearance. Our goal is recovering x+ using
(z+p , za) and translating a new image with (z−p , za). We
note that all samples in the dataset would have different
poses, i.e, it is impossible to get a ground-truth image for
the newly translated image. Properties of each component
will be further discussed in the following subsections.

A. Pose distillation branch
As we have mentioned in the previous section, the pose

distillation branch aims at extracting representative human
pose feature zp ∈ RH

8 ×
W
8 ×d from the input image. However

there is no guarantee that the encoder would preserve only
pose-related information while leaving out unnecessary con-
tents from the images. We therefore adopt the technique of
knowledge distillation which is able to transfer the behavior
of an existing teacher model to our student model.

To be more precise, the pose distillation branch consists of
an encoder-decoder based pose detector Fp, which generates
a 17-channel landmark heatmap h ∈ RH×W×17. Unlike
existing methods which only implicitly approximate the
landmarks or features based on some geometric assumptions,
knowledge distillation ensures our model also explicitly
detect meaningful pose landmarks as the teacher model does.
In consequence, we define the distillation loss by minimizing
the difference between their output activations:

Ldistill = ‖ψ(x)− Fp(x)‖2, (1)

where ψ denotes output activations from the pose estimation
teacher model [17]. Instead of directly using the activa-
tions as human pose landmarks, we further re-project the
coordinates of its max activations to another Gaussian-like
heatmap by a fixed Gaussian convolution kernel centered
at the landmark coordinates. As a result, we obtain a new
Gaussian-like heatmap p ∈ RH×W×17 which contains only
semantic pose information for the later pose feature encoding
Ep : p→ zp.



Figure 2: Our proposed MOMI-Net including a pose distillation branch and an image translation branch. We have x, x+, x−

denote the source image, positive and negative samples respectively. zp and za represent their pose and appearance features
and they are recombined for generating images x̂+ and x̂−.

B. Image translation branch

Appearance feature encoder. After the pose distillation
branch encodes the representative pose feature zp from
the input, our image translation branch would extract the
remaining appearance details for image reconstruction and
translation. With the recent success of attention mecha-
nism [18], [19] in convolutional neural networks, we could
also utilize pose information together with the input image
to extract more accurate appearance features. To be detailed,
our appearance feature extractor consists of a downsampling
encoder Ea plus a series of pose attention blocks φ [10]. The
final appearance representation is compute as follow:

za = φ(Ea(x), zp), za ∈ R
H
8 ×

W
8 ×d. (2)

Image generator. The image generator G is deployed to
recover appearance details from input images conditioned
on pose features. Rather than directly learning an image-
to-image mapping function with paired ground truth like
other pose-guided methods do, we train our image generator
by manipulating the intermediate latent features (za, zp)
with different combinations. For instance, the input image
x should be recovered by za and zp itself, and meanwhile
we also expect za and z+p should recover x+ since they
share the same identity (appearance). Thus, we calculate the
reconstruction loss of image translation branch:

Lrecon = ‖x−G(za, zp)‖1 + ‖x+ −G(za, z+p )‖1. (3)

However, simply minimizing pixel-level L1 loss cannot
guarantee the image perceptual quality and result in blurry
images as observed in [20]. We consequently reformulate
the objective of image translation branch as:

Ltranslate = Lrecon +
∑
l

λl‖ψl(x)− ψl(x̂)‖1, (4)

where x̂ = G(za, zp) is the reconstruction of input x, and
ψl is the feature map obtained from the l-th block of VGG-
19 [21]. We empirically find out using l = {2, 5} leads to
better results.

Discriminator. Finally, the discriminator D (not shown in
the figure) is deployed to distinguish whether the generated
image and the input image belong to the same person, and
meanwhile to ensure the generator would produce realistic
images. That is, the image generator tries to fool the dis-
criminator by recovering and translating sufficient appear-
ance details which contains identity-related information. The
adversarial loss of the discriminator D is thus defined as

Ladv =Ex∼X [logD(x, x+)]+

Ex̂∼X ′ [log(1−D(x̂, x+)]+

Ex̂+∼X ′ [log(1−D(x, x̂+)],

(5)

where X and X ′ represent the true data distribution and
generated data distribution by the image generator G.

C. Skeleton patch verification

Besides learning representative pose and appearance fea-
tures in a multi-task learning scenario, we further pro-
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Figure 3: Qualitative comparisons of conditional image translation on Market-1501 dataset. The generated image should
share appearance details in src while having the pose in tar. DG, PN and PG2 represent the results of [12], [8] and [2],
respectively. Our∗ denotes the variant of our method excluding perceptual loss during training.

pose skeleton patch verification (SPV) to jointly optimize
our network by exploiting the information and knowledge
learned from both branches. The key concept of SPV is
to online match human local patches according to their
pose landmarks. For instance, when transferring appearance
details from the source image x to its negative sample x−,
there is actually no ground truth image to tell the network
how x̂− = G(za, z

−
p ) should look like. However we could

still expect their local appearances (e.g, color of the sleeve,
trouser, or shoes) to be invariant after changing the pose.
To this end, we apply RoI Align [22] to the source image
x and translated images x̂− according to their landmark
coordinates on heatmap p. As depicted in Fig. 2, the RoI(·)
operation would return a series of image crops given the
corresponding bounding box coordinates. Thus we integrate
this operation into MOMI-Net to extract significant human
patches for the online verification process. Finally, we define
our SPV loss as

Lpatch = ‖RoI(x, p)−RoI(x̂−, p−)‖1. (6)

Is is also worthwhile to emphasize that SPV loss is appli-
cable to any unpaired images, which allows our network
to generate more realistic images by viewing a diversity of
training pairs.

D. Training of our model

Our multi-task network can be jointly train end-to-end by
optimizing the following full loss function:

L = Ldistill + αLtranslate + βLpatch + γLadv, (7)

where α, β, γ are the weighting hyperparameters for the
translation branch, SPV loss and adversarial learning respec-
tively. We found choosing (α, β, γ) = (1.0, 0.5, 0.5) leads
to best image quality in our experiments. We also analyze
the influence between γ and generated images in Fig. 4.

III. EXPERIMENTS

A. Dataset and settings

Market-1501 [23] is a large scale multi-view dataset that
have been commonly used for person image generation. It is
originally a person re-identifiction (re-id) dataset containing
1501 identities in total 32668 images captured from 6
disjoint camera views. The images are split into train and test
sets of 12936 and 19732 images with 750 and 751 identities.

However, existing works evaluate their methods using
paired images only (i.e., the source and the target are the
same identity), which is not able to fully evaluate the
performance in the image translation setting. Therefore, we
additionally divide 751 test identities into non-overlapped



source group (376 identities) and target group (375 identi-
ties). We randomly create 12000 source-to-target image pairs
and ensure the identity of source and target are not identical.

B. Evaluation Metrics

In the quantitative experiments, the Inception Score
(IS) [24] and Fréchet Inception Distance (FID) [25] are
reported to measure the quality of generated images. To
eliminate the influence of background in images, we further
implement mask-IS by filtering out unnecessary background
before computing the score.

We note that these metrics only indicate how realistic the
generated images are but not how well they translate the
appearances from source to target, therefore we introduce
a new evaluation metrics appearance preservation score
(APS). We finetune an ImageNet pre-trained ResNet-50 on
the test set. This network returns the score of affinity ∈ [0, 1]
between two images, i.e., the score indicates how similar the
generated image and the source image are and whether they
have the same identity.

C. Methods to be compared

In our experiments, we quantitatively and qualitatively
compare our method with both pose-guided methods
(PG2 [2], PN-GAN [8]) and image translation methods
(DG-Net [12]). We re-implemented their official source
code and generated new images based on our selected
12000 pairs. Note that PG2 and PN-GAN require additional
pose inputs when generating results while DG-Net and our
method need RGB images only.

We also perform an ablation study to analyze each com-
ponent in our network. Ours w/o Lpatch denotes removing
of SPV loss Eq. (6), Ours w/o per. represents without using
perceptual loss in Eq. (4) and Ours w/o att. is the variant of
replacing pose attention blocks into normal residual blocks.

IV. DISCUSSION

A. qualitative results

Fig. 3 shows the qualitative comparison of our model
and state-of-the-art methods. It can be seen that our model
produced favorable results even the person in the source
image is blocked by the umbrella or shifting to the corner.
In contrast, DG-Net simply copy-pasted all the content from
target images and changed their color, which failed to extract
correct appearance information from source images due to
irrelevant background. Also compared to pose-guided meth-
ods, they cannot generally translate appearances to targets
well since they only learn an image-to-image mapping from
limited paired training data.

B. quantitative results

Table I summarizes the quantitative results of our pro-
posed method against state-of-the-art methods. Our method
achieved the highest on APS which once again confirmed

Figure 4: Analysis of the hyper-parameter γ.

Methods
Market-1501 test

IS ↑ mask-IS ↑ FID ↓ APS ↑

Real (source) 3.51 3.25 - -
PG2 2.95 3.34 131.56 0.8160
PN-GAN 3.17 3.21 45.10 0.7220
DG-Net † 3.62† 3.26† 17.01† 0.8880

Ours 2.44 2.98 57.50 0.9026
Ours w/o Lpatch 2.33 2.93 54.32 0.8677
Ours w/o per. 3.33 3.16 110.64 0.9106
Ours w/o att. 2.08 2.85 78.20 0.8619

Table I: Quantitative results and ablation studies on our
proposed method. We note that DG-Net incorrectly copy-
pastes all content from targets, thus their realism results is
incompatible.

our ability of image translation. Interestingly, although Ours
w/o per. got the highest APS, its image quality is much
worse. The ablation study thus verified the design choices
in our full model, which is able to balance image quality
and translation ability.

Another interesting observation is the realism metrics,
where we did not get a desirable result corresponding to
the qualitative one. We come up with several explanations:
1) Background has a larger impact on the score. We can
see that most methods got improvement after masking out
the background. However, evaluating the background quality
makes no sense since our model only focuses on translating
human appearances. 2) As pointed out in [26], IS score is
biased. We surprisingly find out PG2 and Ours w/o per. got
the best IS scores but the actual image quality seems not
necessarily better from human eyes. We conclude that FID
could better evaluate the quality of the images and our model
is still capable of producing comparable results. 3) In this
project, we did not finetune our model for long epochs. Also,
we did not search out optimal hyperparameters for training,
but we believe there is still room for improvement.

V. SUMMARY

In this project, we propose MOMI-Net and SPV loss to
tackle the conditional image translation problem. We solve
issues in existing works by learning representative features
with mult-task learning. Experimental results confirmed the
effectiveness of our proposed model.
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